Update on Renal Therapeutics

Caroline Ashley Lead Pharmacist **Renal Services** UCL Centre for Nephrology, Royal Free Hospital, London

Kongress für Arzneimittelinformation January 2011

What are we going to discuss?

- How to calculate renal function
- Types of renal replacement therapy (RRT)
- How to adjust drug dosages according to type of RRT

Creatinine 120 µmol/l, eGFR 130 ml/min

Staging of CKD (K-DOQI)

Stage	Description	GFR (ml/min)
1	Normal GFR with another abnormality	> 90
2	Mild reduction in GFR with another abnormality	60-89
3	Moderate reduction in GFR	30-59
4	Severe reduction in GFR	15-29
5	End-stage renal disease	<15 or dialysis

Am J Kidney Dis 2002;39(suppl 1):S17-S31

Old Classification of CRF

Grade	GFR (mL/min)	Serum creatinine (μmol/L)
Mild	20-50	150-300
Moderate	10-20	300-700
Severe	< 10	>700

Cockcroft & Gault

F x (140-age) x weight (Kg) serum creatinine (µmol/L)

1.04 (female) and Where F =

1.23 (male)

Nephron 1976 16 (1) 31-41

Cockcroft and Gault

- patient is < 15 years or > 90 years of age
- patient has rapidly changing renal function
- patient has a serum creatinine > 350 μmol/L
- patient is pregnant
- patient is an amputee
- patient is severely wasted

MDRD equation Nodified Diet in Renal Disease

170 x (serum creatinine) -0.999

- x (age) -0.176
- x (0.762 if female)
- x (1.180 if African American)
- x [Serum Urea Nitrogen] -0.170
- x [Alb] +0.318

Normalised value ∴ may need to correct for patient's actual body surface area

Nephrol Dial Transplant (2002) 17: 2036-2037

So which one do we use?

Drug Dosing

- generally over-estimates
- People tend to use ABW rather than IBW
- Pharmacists use correctly!!
- •MDRD said to be more accurate than C&G.
- Does not require patient's weight.
- Same restrictions / inaccuracies as C&G, eg. < 18 yrs, amputees, pregnant, malnourished.

- 90% confidence intervals are quite wide, e.g. 90% of patients will have a measured GFR within 30% of their estimated GFR.
- The MDRD equation tends to underestimate normal or near-normal function, so slightly low values should not be over-interpreted.

		eGFR	
	Serum Creatinine (μmol/L)	CrCl (mL/min) C&G	eGFR (mL/min/1.73m²) MDRD
Young muscular black male (20yrs, 90Kg)	110	120	>90
Thin elderly female (75yrs, 50Kg)	110	29	40

Drug Dosing

Practical suggestions:-

- For the majority of drugs, use MDRD eGFR.
- For drugs with narrow therapeutic index, use eGFR, BUT correct for pt's actual BSA
 GFR Absolute = eGFR x Actual BSA

1.73

 \bigcirc r

If in doubt, and for narrow therapeutic index drugs,

Use Cockcroft and Gault

Nomenclature Continuous Renal Replacement Therapy (CRRT) Continuous Arterio-Venous Haemofiltration (CAVH) Continuous Veno-Venous Haemofiltration (CVVH) Continuous Arterio-Venous Haemodiafiltration (CAVHD) Continuous Veno-Venous Haemodiafiltration (CVVHD) Intermittent Haemodialysis (IHD) Dialysate Diafiltrate Ultrafiltration (UF)

Indications for CRRT

- Metabolic acidosis (pH>7.3 & falling)
- Hyperkalaemia (K+ >6.0mmol/L & 1)
- Fluid overload that compromises gas Xchange
- •Urea > 30 mmol/L
- Creatinine > 300 µmol/L
- Oliguria (< 200ml /12 hours) or anuria
- Haemodynamic instability (no IHDx)
- Pt has / at risk of cerebral oedema

CVVHD

- Blood is passed along one side of a semipermeable membrane.
- Crystalloid solution is pumped along other side of membrane in opposite direction.
- Solutes move across membrane by convection & diffusion at rate depending on concentration gradient & molecular size.
- More effective at clearing middle-size molecules
- Doesn't mirror physiological process in kidney

CVVH

- Blood passed under pressure down one side of highly permeable membrane
- Water and solutes removed by convection, driven by the pressure gradient.
- Better for fluid removal
- Solutes present at low concentrations, large volumes of fluid must be removed to achieve adequate solute clearance
- Mirrors process of GF within kidney

Pre vs Post Dilution

- Post-dilution is recommended method of Acute Dialysis Quality Initiative
- Pre-dilution only limited evidence that this method prolongs life of filter
- Pre-dilution results in reduction of solute clearance due to dilution of solutes as blood enters the artificial kidney

Drug Removal by CRRT

- Drug Factors
- Low molecular weight (up to 20,000 daltons)
- Low % protein binding.
- Low apparent volume of distribution
- High degree of water solubility
- · Relatively short half-life
- Usually excreted via the kidneys

Drug Removal by CRRT

- System factors
- Size of treatment cycle will directly affect convective transport ⇒ higher treatment cycle volumes & blood pump speeds ⇒ more efficient drug removal
- · Chemistry & SA of the dialysis membrane
- Majority of drug-membrane binding occurs in first hours of membrane life ⇒ clearance artificially high then.

Effective GFRs on Dialysis

RRT GFR (ml/min)

Intermittent HD 250 - 300 (0-10 otherwise)

 CAPD / APD
 5 - 10

 CAVH / CVVH
 15 - 30

 CAVHD / CVVHD
 20 - 35

Calculating Drug Doses

- Intermittent HDx excellent clearance of small water-soluble molecules whilst on dialysis.
- No clearance when not on dialysis.
- Time doses around dialysis sessions.

Eg. Ertapenem, Normal dose = 1g OD Dose in ESRF = 50% normal dose

Either 500mg OD, AFTER dialysis on HD days,

Or 1g 3 x/week after each dialysis

Example 1

- 25-year old male
- ESRD, dialysis-dependent
- Developed AML
- Prescribed Flag-X
 (Fludarabine, Cytarabine, GCSF, Liposomal Daunorubicin)
- Help?!

Example 1

- Fludarabine
 - * 40-60% excreted unchanged in urine
 - * Protein binding 60%
 - * Active metabolite also renally excreted
 - * S/E include severe neurotoxicity
 - * Single dose vs repeated dosing
- Liposomal Daunorubicin
 - * 100% liver excreted

Example 1

Cytarabine (3g/m²)

- Neuro & Cerebellar toxicity
- Elevated baseline serum creatinine independent risk factor
- Incidence of 8% in patients with GFR > 60ml/min
- Incidence of 86 100% in patients with GFR < 40ml/min
- Only 10-15% excreted in urine, inactive metabolites

Example 1

• Fludarabine - 50% dose

Cytarabine - 50% dose

Daunorubicin - 100% dose

 All in reduced volumes of IV fluids (cytarabine neat in syringe driver)

- Gave chemotherapy each afternoon / evening
- Dialysed each morning

Example 2

- 68 yr-old male, HDx dependent, diagnosed with small cell lung Ca.
- Oncologists decided single agent chemo.
- Cisplatin very difficult to dose-reduce in renal impairment.
- Carboplatin very easy to dose reduce.

Example 2

Carboplatin Dose = Target AUC x [GFR (ml/min) + 25]

where AUC = 5 (sometimes 6 or 7) GFR = ? For patient on HDx?

- Dosed on Day 0
- Consecutive dialyses on Days 1 & 2 to remove it.

Calculating Drug Doses

- CRRT is a continuous process
- Dose as if a patient renal function with the GFR according to the CRRT system used.

Eq. CVVH = 15 - 30 ml/min.

CVVHD = 20 - 35 ml/min

- No need to give supplementary doses
- Use published dose recommendations if available
- Otherwise, seek specialist advice.

